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We investigate the influence of surface energy anisotropy on the dynamics of quantum dot growth by
looking at the long-time dynamics of the morphological �Asaro-Tiller-Grinfeld� instability of a strained thin
film driven by surface diffusion during growth and annealing. We derive a continuum model accounting for
anisotropic surface energy, wetting, and elastic energies. We obtain a nonlinear nonlocal evolution equation for
the film height in the small-slope approximation which we solve numerically given a gamma plot of the surface
energy based on experimental properties of silicon-germanium films. A small anisotropy induces a complete
change in the coarsening dynamics. The noninterrupted coarsening �Ostwald ripening� at stake for isotropic
strained films is destroyed by anisotropy and the system is glued in metastable states. We characterize the
statistical properties of the resulting pyramids and show that both their density and mean volume can increase
with the total amount of matter. We find an optimal mean film height at which the island size distribution is
peaked. These results indicate that different island density or volume may be obtained by varying solely the
quantity of matter. Finally, we present an energetic model which describes energetic pathways along which
ripening can indeed be suppressed.
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I. INTRODUCTION

Self-organization of elastically strained nanostructures in
the Stranski-Krastanow �SK� growth mode has attracted
much attention both as a fundamental research issue but also
due to its potential applications for electronic and optoelec-
tronic devices.1–10 For example, high efficiency quantum
dots are under active consideration for laser applications.11 In
the SK mode where a film is coherently deposited on a sub-
strate, islands lying on a wetting layer arise, once the film
exceeds a critical thickness above which the flat geometry
becomes unstable and relax the elastic stress. This mode is
observed in many semiconductors and metallic systems and
may be used to grow dislocation free self-organized nano-
structures as long as the misfit between the film and substrate
is low enough.

The silicon/germanium films serve as a paradigm for the
SK growth mode. The balance between anisotropy, wetting,
elastic relaxation, alloying and kinetics has revealed a variety
of shapes which are still under investigation.7,9,12–16 It is now
well established that there exists two growth regimes for
Si1−xGex films deposited on Si�001� depending on the inten-
sity of stresses tuned by x. For x larger than 0.5, the usual
nucleation regime is operating and small three-dimensional
islands suddenly nucleate at spatially disordered positions
after deposition of a critical height. In this regime, the emer-
gence of islands is strongly influenced by microscopic effects
�adatom diffusion, attachment/detachment to steps or nuclei,
intermixing� and an atomistic view is required to describe the
growth or annealing dynamics.14 On the other hand, for
smaller stresses, a nucleationless evolution is observed.17,18

Above a given critical height, the film becomes unstable and
develops undulations17–24 with a well-defined horizontal
wavelength. This elastic instability is the variation in the
Asaro-Tiller-Grinfeld �ATG� instability25,26 which depends
on the competition between surface and elastic energies and
results from surface diffusion induced by chemical-potential

gradients. This scenario leads to modulated patterns �ripples�
characterized by a wavelength ranging from 10 to 100 nm
depending on the misfit value.17,18,27–29

We focus in the present article on the long-time dynamics
of this elastic instability and notably on its dependence on
anisotropy. Indeed, after the initial stages of the instability
characterized by a typical wavelength, islands separated by a
wetting layer arise and may coarsen. After some time for
coarsening where small prepyramidal islands grow with an
increasing aspect ratio and thence increasing slopes, the is-
lands exhibit strong anisotropy as they first display square-
base pyramidal shapes27,28 before evolving into more com-
plex geometries, see, e.g., Ref. 7. Even though kinetic
differences between the nucleation and instability regimes
exist, the presence of strain-induced �105� facets17,18,27,28 in
Si/Ge systems is accountable30,31 in both cases for the pyra-
midal shapes. Hence, we aim at depicting the development of
anisotropic islands and their subsequent evolution. Experi-
ments on Si/Ge by Berbezier et al.28,29 revealed that anneal-
ing of thin films lead to an evolution frozen in a dense array
of pyramids. The resulting islands display a noticeable size
dispersion and their positions are not organized on a regular
array.

As regards the long-time dynamics of the ATG instability
in isotropic systems, one may recall that the competition be-
tween surface and elastic energy leads to finite-time singu-
larities which eventually lead to fracture generation in thick
films.23,32–38 In thin films, however, wetting interactions be-
tween the film and the substrate may impact the long-time
dynamics.39–42 The nonlinear analysis of the instability in
presence of smooth wetting interactions was hence studied in
Ref. 41, where the elastic problem was solved under the
thin-film hypothesis. It was shown that the nonlocal nonlin-
ear effects are necessary to prevent the finite-time singularity
of the instability. The initial instability then lead to a surface
where isotropic islands separated by a wetting layer undergo
Ostwald ripening, where large islands grow at the expense of
small ones due to mass transfer via the wetting layer. The
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numerical analysis of the long-time dynamics then reveals41

a noninterrupted coarsening characterized by an algebraic
decay of the number of islands, which exponent depends
markedly on the system dimensionality. However, the latter
isotropic dynamics is driven by an elastic relaxation which
driving force is mainly the increase in the island aspect ratio
which relaxes the elastic stress more efficiently. This sce-
nario may hence apply to the first stages of the experimental
instability, where the initial corrugation transforms into iso-
tropic prepyramids but not to subsequent stages character-
ized by anisotropic islands. One may indeed question the
influence of the surface energy anisotropy on the driving
force of the dynamics. Moreover, the morphology resulting
from the different growth modes is of crucial interest and we
also aim at characterizing the surface statistical properties,
island density, mean island volume, and island size distribu-
tion.

It was shown in Ref. 43 on the basis of an energetic model
describing an array of pyramidal islands of volume V and
density n that an optimum island size exists for a given de-
posited height and given island density. In particular, the
optimal island size increases when the island density
diminishes.43 However, the energy of the optimal configura-
tion keeps on decreasing as the island density diminishes at
constant amount of matter so that Ostwald ripening is ex-
pected in this description. Simulations of the dynamical evo-
lution of these systems then revealed helpful. Large scale
numerical simulations of island growth suffers from the in-
herent difficulty of treating the long-range elastic forces and
the geometrical nonlinearity of the stress-free boundary con-
ditions. Despite intrinsic limitations, finite elements �FE�
simulations of continuum mechanics models44–49 have been
used to study both growth and annealing in the SK mode and
revealed new features. A large mismatch and large wetting
potential were shown to lead to islands stable against coars-
ening in anisotropic films.44,46 On the other hand, a very
small anisotropy �described by variations in the surface en-
ergy of relative order 10−4� revealed also a possible inter-
rupted coarsening.45 In the finite element methods, the strain
energy density at the film free surface has to be, in principle,
calculated at each time steps and this may impose some limi-
tations on the scale on the system. Despite this difficulty the
FE simulations are extendable to large slopes which are com-
monly found in domes and barn shape and also in prepat-
terned strained geometries.50

Here, we choose to work with an alternative method al-
lowing for large-scale simulations by using the small-slope
approximation in which an explicit nonlinear integrodiffer-
ential equation for the film height is derived. This framework
was introduced in Ref. 35 in order to treat the case of an
isotropic film lying on a nondeformable substrate and where
the evolution equation leads to finite-time singularities char-
acterized by a slope divergence due to nonlinear local terms.
This phenomena can be rationalized in terms of elastic stress
concentration and is reminiscent of the ATG finite-time
singularities.25,36,51 An extension of the latter work was done
in order to include the deformability of the substrate together
with wetting interactions between the film and substrate.39–41

The combination of both wetting and nonlinear nonlocal
elasticity then regularizes the dynamical singularity and

leads to a long-time dynamics characterized by islands sepa-
rated by a wetting layer. During annealing, the film under-
goes Ostwald ripening where large islands grow at the ex-
pense of smaller ones due to mass transfer through the
wetting layer. In isotropic systems, the latter coarsening is
noninterrupted40,41 and the surface tends to its absolute mini-
mum of energy, as corroborated by FE simulations.52 How-
ever, after some time for coarsening, islands display slopes
comparable with the first facet angle �which corresponds to
the �105� facet in Si/Ge� and anisotropy is crucial for a
proper analysis of the subsequent evolution. The small-slope
approximation will be all the more justified as pyramids de-
velop angles at most corresponding to the �105� facets, see,
e.g., Ref. 17.

In the present Article, we derive a continuum model ac-
counting for anisotropic surface energy, wetting, and elastic
interactions and derive the nonlinear evolution equation nec-
essary to investigate the long-time dynamics of the instabil-
ity. We solve numerically the latter equation using large-
scale simulations and discuss the effects of the surface
energy anisotropy on ripening during growth and annealing.
We show that an interrupted coarsening happens when a
plausible surface energy anisotropy and wetting potential are
considered. The system is then characterized by a disordered
array of islands whose density and volume are functions of
the total amount of matter. We find that the island density in
the stationary regime increases as function of the deposited
height until it reaches a plateau where elastic interactions,
steric effects, and shape evolution occur. We find an optimal
amount of matter for which the island size distribution is
narrow and accordingly, the island size dispersion reduced.
In order to understand the origin of the interrupted coarsen-
ing of pyramids, we present an energetic model which de-
scribes energetic pathways relevant for describing Ostwald
ripening where fixed islands exchange matter via surface dif-
fusion. The combination of anisotropy, wetting, and elastic-
ity, enforces the model to display a valley of states with an
energy difference, which is the driving force for coarsening,
that is vanishingly small.

In Sec. II we present in a self-contained presentation, the
ingredients of our continuum model including surface effects
�anisotropy and wetting� and elasticity. In Sec. III, we dis-
cuss the results of the numerical resolution of the evolution
equation derived in Sec. II. In Sec. IV, we generalize the
energetic model of Ref. 43 in order to compute energetic
pathways relevant for the Ostwald ripening.

II. CONTINUUM MODEL

A. Surface diffusion

We aim at modelizing the elastic instability at stake in
semiconductor films5,17–24,53 when the temperature is high
enough to allow surface diffusion but low enough so that
volume diffusion together with evaporation can be neglected.
Following Mullins,54 we write mass conservation during sur-
face diffusion induced by surface currents proportional to
gradients of the surface chemical potential �. It enforces the
conservation equation55
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�h/�t = F + D�1 + ��h�2�S� , �1�

where h�r , t� is the free surface of the film with r= �x ,y�, see
Fig. 1, F is the deposition flux, D a diffusion coefficient, �S,
the surface Laplacian, and � is homogeneous to an energy
density.

The chemical potential at the surface is defined by the
energy difference due to mass variation, which can be com-
puted by functional derivatives51

� = �F/�h �2�

of the free energy of the system which encompasses surface
and elastic contributions F=Fs+Fel so that �=�s+�el. The
surface energy

Fs =� ��h,n��1 + ��h�2dr �3�

includes both for wetting effects and surface energy
anisotropy via, respectively, the dependence of the local
surface energy � on the film height and on the local
orientation of the surface described by its normal
n= �−hx ,−hy ,1� /�1+ ��h�2. The elastic energy is given by
the integral over both the film and the substrate of the elastic
energy density Eel�r ,z�

Fel = �
z�h�r�

Eel�r,z�drdz . �4�

B. Anisotropic surface energy

The contribution �s of the surface energy Fs to the chemi-
cal potential � follows merely from Eqs. �2� and �3� and
reads

�s = �� +
��

�h

1
�1 + ��h�2

−
2

�1 + ��h�2
hjhij

��

�hi

− �1 + ��h�2�hij
�2�

�hi � hj
+ hi

�2�

�h � hi
� , �5�

with summation over repeated indices i , j=x ,y and where �
is the mean curvature

� = −
hii + �ijhi�hj�hij

�1 + ��h�2�3/2 , �6�

with �xx=�yy =−�xy =−�yx=1 and with x�=y and y�=x. As a
first approximation, we examine a decomposition of the sur-
face energy where wetting and anisotropy are disentangled
such as

��h,n� = � f�1 + �n�n� + �h�h�	 , �7�

where � f =��h→� ,n= ẑ� is the surface energy of a thick
film with a �001� surface. With this assumption, the cross
derivatives present in the last term of Eq. �5� vanish. Wetting
effects are characterized by the function �h, see, e.g., Refs.
23 and 56, which we choose, given ab initio calculations on
Si/Ge systems31,57 as

�h�h� = cw exp�− h/�w� , �8�

where cw and �w are the amplitude and the depth of the
energy variation with the film height. For a GexSi1−x film, we
fit atomistic results by setting cw=0.09 for x=0.25 and �w
given by the lattice parameter.

The anisotropic term is rewritten as �n�n�=�a�n�−�a�ẑ�
where the anisotropic function �a describes different minima
of the surface energy at preferential orientations n�. Differ-
ent parametrizations of minima in the gamma plot are avail-
able, see, e.g., Refs. 45, 49, and 58–61. We choose here to
depict them as

�a�n� = − 
�
A� exp�− 	�

�1 − �n · n��2 + 
�	 , �9�

where A� characterizes the depth of the minimum for n� and
	�, its extent over n. If 
� were zero, the argument of the
exponential would reduce to �sin �� where � is the angle
between n and n�, and would stand for the step creation
energy2 which introduces singularities when �=0. We regu-
larize this singularity with the parameter 
�, see, e.g., Ref.
59, which beside technical benefit, can be linked to thermal
rounding of the cusp of the facet orientation, see, e.g., Ref.
62.

As regards Si/Ge films deposited on a nominal �001� sur-
face, one must regard minima corresponding to the �001� and
�105� orientations. The �001� orientation is expected to be
stable but not a facet. Indeed, the development of the elastic
instability with a nucleationless scenario17,18 can be rational-
ized with this nonfacet hypothesis.45,63 Hence, we specify a
shallow minimum of the surface energy near hx=hy =0. On
the other hand, the appearance of square-base pyramids with
the �105� facets in strained films17,18,27 indicates that this
orientation is another minimum for the surface energy. This
minimum is in fact induced by strain,30 yet we will not in-
clude at first order its dependence on the local strain and will
consider that the mean strain induces a minimum for �105�.
As seen in scanning tunnel microscope images,63 the �105�
facets for pyramids as opposed to the roughness of the
prepyramids near �001�, indicate that the minima for �105� is
stiffer than the one for �001�. Hence, we will assign

0=10−1 and 	0=10 for n0= �0,0 ,1� corresponding to the
�001� orientation, and 
1=10−3, 	1=15 for the four �105�
minima, at n1 , . . . ,n4= ��sin 1 ,0 ,cos 1� and
�0, �sin 1 ,cos 1� where tan 1=1 /5, see Figs. 2 and 3. As
found by ab initio calculations,30 one can expect this mini-
mum to be on the order of 1% below the minimum at �001�.
We will take in the following �n�n��=−0.7% for the �105�
minima as compared to the �001� one. The dynamics found
below is in fact not sensitive to this precise choice as long as
it remains on the order of a few percent. Finally, the limit at
large slope is taken as +2.6% larger than the value for �001�,

FIG. 1. �Color online� Geometry of the film/substrate
system.
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with again little consequence on the physical properties.
Other orientations, such as �113� and �15 3 23� could be also
included as other minima and could be relevant for domes
and hut islands7,15 but we will restrict our study to thin
enough films with only small pyramids with �105� facets.

C. Elastic contribution

The elastic contribution to the chemical potential, Eq. �2�,
is merely the elastic energy density at the free surface
�el=Eel�r ,z=h�r�	, which is given by

�el =
1

2
�ijeij�z = h�r�	 , �10�

where � and e stand for the stress and strain tensors. Me-
chanical equilibrium is supposed to be achieved on time

scales much shorter than the diffusion and growth time
scales so that the displacement u satisfies the Lamé equations

� j�ij � L�u� = 0, �11�

where i , j=x ,y ,z. We consider here linear isotropic elasticity,
where

�ij =
E

1 + �
�eij +

�

1 − 2�
ejj�ij� �12�

with the Young modulus E and Poisson ratio �. Elastic an-
isotropy could be included at that stage but we aim primarily
at exhibiting the role of the dominant surface energy aniso-
tropy and will therefore discard it. Moreover, in order to
simplify calculations, the film and substrate elastic constants
are supposed to be equal unlike the case treated in Ref. 41
where different elastic coefficients were considered. This hy-
pothesis greatly simplifies the analysis as shown below.
Small differences in the final result may arise when consid-
ering different elastic constants, as the comparison with Ref.
41 shows.

The film with a native lattice parameter af is coherently
deposited on the substrate with lattice parameter as. Dis-
placements are computed with respect to the substrate refer-
ence state in the x and y directions,

eij =
1

2
�� jui + �iuj� − �̄�ij��ix + � jy��z� �13�

with the misfit �̄= �1−af /as� and �z�, the Heaviside function
equal to 1 for z�0 and 0 otherwize. The coherence between
the film and substrate enforces the continuity of displace-
ments and stresses at the film/substrate interface, and implies

u�z=0− = u�z=0+, �14�

��u	 · z�z=0− = ��u	 · z�z=0+. �15�

Finally, the free surface is supposed to be in contact with a
vanishing vapor pressure and is characterized by a negligible
surface stress,40 so that the stress-free surface satisfies

��u	 · n�z=h�r� = 0 �16�

and we fix the origin of displacements with the condition
u �z=−�=0.

The Lamé equations can be conveniently handled using
Fourier transforms with respect to r,

F�h	�k� � ĥ�k� =
1

�2��2� dreik·rh�r� . �17�

The solution of Eq. �11� can then be written as

u = u0 + u1, �18�

with the flat film solution

u0 = �0,0,�z�z�	 , �19�

where �=2�̄� / �1−�� and with

0 0.1 0.2 0.3 0.4 0.5 0.6
hx

1

1.01

1.02

Γ

FIG. 2. Dependence of the surface energy �in units of � f� on the
local slope hx=tan  for hy =0, where  is the angle between the
normal n and the z axis. The first shallow minimum at hx=0 corre-
sponds to the �001� orientation while the other minimum at
hx=tan 1=1 /5 describes the �105� orientation. Other minima are
present for �hx=−tan 1 ,hy =0� and �hx=0,hy = � tan 1�.

FIG. 3. �Color online� Dependence of the surface energy �in
units of � f� on the local slopes hx and hy with one minimum for the
�001� orientation and four minima corresponding to the �105�
orientation.
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û1�k,z� = 1
3−4�e�k�z�

1

�k�
Cx�kx

2z + �3 − 4���k�	 + Cykxkyz + Cz�k�ikxz�

1

�k�
Cxkxkyz + Cy�ky

2z + �3 − 4���k�	 + Cz�k�ikyz�

z�ikxCx + ikyCy� − Cz��k�z + 3 − 4��
� , �20�

where the three constants Ci are to be determined given the
boundary conditions �Eq. �16�	. The general solution for u
should a priori involve both e�k�z and e−�k�z contributions in
the film and the substrate. The e−�k�z terms trivially vanish in
the substrate but they also vanish in the film as shown in
Appendix A. Hence, the solution for u1 involves only three
constants instead of the a priori six constants involved in the
second-order three-dimensional Lamé equations.

To solve the surface free boundary condition, we use the
small-slope approximation where the surface slopes are sup-
posed smaller than unity so that one can decompose h�r�
according to

h�r� = h0 + 
h1�r� , �21�

where h0 is the mean film height and 
, a small parameter.
The boundary condition �Eq. �16�	 can then be solved using
expansions in power series of 


Ci = 

n=1

�


nCi
�n�, �22�

where the sum starts with n=1 as u0 is already the solution
for a plane film. Finally, one finds

�Cx
�1�

Cy
�1�

Cz
�1� � = �̄

�1 + ��
�1 − ��

e−�k�h0

�k� ��2�1 − �� − �k�h0	ikxĥ1

�2�1 − �� − �k�h0	ikyĥ1

�1 − 2� + �k�h0��k�ĥ1

� �23�

at first order while the second order is given by convolutions

Ci
�2� = �̄

�1 + ��
�1 − ��� dk1

e−�k�h0

�k1�k2 ĥ1�k1�ĥ1�k − k1�Di�k,k1� ,

�24�

where

Dx�k,k1� = ikx�k1��1 − 2� − �k�h0�k · k1

+
1

�k�
− 4�1 − ���ik1xk

2k · k1 + ikx��k ∧ k1�2	

+ 2�k�ikxh0��k · k1�2 + ��k ∧ k1�2	� �25�

with a symmetric relation for Dy where x and y are ex-
changed while the last constant is given by

Dz�k,k1� = �2�1 − �� + h0�k�	�k��k1�k · k1

− 2�1 − 2� + �k�h0���k · k1�2 + ��k ∧ k1�2	� .

�26�

The full form of the solution for the displacement u is dis-
played in Appendix B. From this solution, we compute the
elastic chemical potential �Eq. �10�	 which reads

�el/E0 = 1 − �Hii�h� + ��2h�h + ��h�2�

+ ��2Hij�hijklHkl�h�	 + Hij�h�ijklHkl�h�	 ,

�27�

where �=2�1+��, E0=E�̄2 / �1−�� is the elastic energy den-
sity of a flat film while the nonlocal operator H, linked to the
long-range elastic interactions, is given by

Hij�h	 = F−1��kikj/�k��ĥ�k�	 . �28�

The dimension index ijkl is ijij =1 for any i , j=x ,y whereas
iij j =−ij ji=� for i� j while it vanishes otherwise. Note that
the chemical potential �Eq. �27�	 has to be invariant under
the transformation h0→h0+�h0. Indeed, the flat film solution
u0, cf. Eq. �18�, is independent of the arbitrary free surface
level beside the trivial localization of the film while the
shape induced displacement u1, equal to the solution for a
single film subject to a biaxial stress, is also independent of
the reference for film heights. In the solution for the elastic
chemical potential �Eq. �27�	, the term h�h seems to violate
this invariance but the latter is restored when this term is
combined with Hij�hHkl�h		. As Hij�h	 is also invariant un-
der the Galilean transformation, the solution �27� as a whole
satisfies this property. Finally, we also find the total elastic
energy �Eq. �4�	, which follows directly from integration of
the elastic energy density and reads at first orders

Fel/E0 =� drh�r� − �1 + ��
h1�r�Hii�
h1�r�	� . �29�

D. Evolution equation

Given the solution for the surface and elastic chemical
potential �Eqs. �5� and �27�	, the evolution equation follows
merely from mass conservation �Eq. �1�	. We consider the
space scale
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l0 = � f/�2�1 + ��E0	 �30�

resulting from the competition between the typical surface
energy � f and the elastic energy E0, which can be associated
with the time scale

t0 = l0
4/�D� f� �31�

with diffusion coefficient D. Eventually, in units of l0 and t0,
the evolution equation reads up to second order

�h

�t
= F + ��− �1 + �n�n� + �h�h�	�h + �1 −

1

2
��h�2�d�h

dh

− hxx
�2�n

�hx
2 − 2hxy

�2�n

�hx � hy
− hyy

�2�n

�hy
2

− 2�hxhxx + hyhxy�
��n

�hx
− 2�hxhxy + hyhyy�

��n

�hy
− Hxx�h�

− Hyy�h� + 2h�h + ��h�2 + 2Hxx�h�Hxx�h	 + �Hyy�h	�	

+ 4�1 − ��Hxy�hHxy�h		 + 2Hyy�h�Hyy�h	 + �Hxx�h	�	

+ Hxx�h	2 + Hyy�h	2 + 2�1 − ��Hxy�h	2

+ 2�Hxx�h	Hyy�h	� . �32�

This equation is parameterized by the dimensionless deposi-
tion flux F in units of t0 and by the parameters of the wetting
potential �h and of the anisotropy �n.

III. NUMERICAL RESULTS

The evolution equation displayed in Eq. �32� was solved
numerically using a pseudospectral algorithm in a L�L sys-
tem with length L=128 using N2 modes with N=256. For the
numerical implementation we used a pseudospectral method
using a fourth-order time stepping exposed in details in Ref.
64. We choose to depict a Ge0.25Si0.75 film deposited on a Si
substrate, with the lattice parameters as=0.27 nm and
af =1.01as, with the elastic parameters � f =0.28 and
Ef =1.231011 kg m−1 s−2 and with a surface energy
� f =1.3 J /m2. The diffusion coefficient is associated with a
typical Arrhenius law D=Ds exp�−Ed /kBT	af

4 /kBT with
Ed=0.83 eV, and Ds=8.4510−10 m2 /s, see, e.g., Ref. 55.
The growth temperature is 700 °C. The intrinsic deposition
noise, together with the natural roughness of the SiGe inter-
faces, are replaced here by a noisy initial condition which
corresponds to a roughness of amplitude 1 monolayer �ML�.

A. First stages

Our goal is to study the long-time dynamics of strained
films evolving via surface diffusion. In order to be closer to
the experimental procedure, we first grow hfin monolayers
until a finite time at which the growth flux is interrupted and
annealing begins, see Fig. 4. The simulations are thence pa-
rametrized by the height of the deposited film hfin which
characterizes the volume of matter at the end of deposition
before annealing begins. Hence, for a projected surface L2,
the volume of matter in the film at the end of deposition is

V=L2hfin. We vary hfin between a value close to the instabil-
ity threshold �below which no instability occurs as defined in
the following� to a value less than the transition to large
islands �see below�, the study of which being beyond the
scope of the present analysis. For the sake of clarity, we
mark with arrows in our numerical results the different times
at which the deposition flux is stopped for the different simu-
lations with different hfin. The flux was chosen neither too
low so that different evolutions occur, nor too strong so that
some evolution may happen during growth and we therefore
scanned different growth modes by varying hfin.

The growth rate of a perturbation h1�r�=eik·r+�t

with a wave vector k behaves typically as41

��k ,h0��−c�h0�k2+ �k�3−k4, where c depends on the mean
film height h0. For h0 below the instability threshold
hc�8 ML,65 � is always negative for all k and the evolution
leads to a flat stable film. We are interested by the regime
above hc where � displays a maximum with a positive value.
The instability leads first to a surface characterized by the
wavelength corresponding to the maximum of ��k� and the
evolution of h1 governed by the linear contributions is
mainly exponential in time. This stage is promptly followed
by coarsening with well-defined islands surrounded by a
wetting layer, where nonlinear and wetting effects fully come
into play.41 During this stage, large islands grow at the ex-
pense of smaller ones due to mass transfer via the wetting
layer similarly to isotropic systems.41 These prepyramidal
islands grow with an increasing aspect ratio and thence with
increasing slopes until they reach the slopes corresponding to
the �105� facets, see Fig. 5. After this stage, square- or
pyramid-base pyramids arise and evolve with a constant as-
pect ratio. Ultimately, the film reaches a stationary regime
where the roughness w, island density � and coverage  �de-
fined by the projected area of the islands above the wetting
layer� remain constant, see Figs. 6–8, as discussed in Sec.
III B.
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FIG. 4. Sketch of the numerical procedure for growth and depo-
sition. The deposited height hdep characterizing the amount depos-
ited at time t for different values of the final deposited height hfin.
The six values hfin= �9.0,9.2,10.2,12.2,15.2,20.2� ML are labeled
as �a ,b ,c ,d ,e , f� from bottom to top. The arrows mark the deposi-
tion flux interruption time where the deposition flux is turned off
and where annealing begins. A double-longer arrow is shown for
visual clarity for the two slightly different values of hfin in the two
first a and b cases.
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We have chosen six different values for
hfin= �9.0,9.2,10.2,12.2,15.2,20.2� ML labeled
�a ,b ,c ,d ,e , f�. These values are chosen above hc but not too
large in order to avoid the appearance of large isotropic is-
lands which relax more efficiently the stress but would, in
connection with Si/Ge films, require additional preferential
directions, see, e.g., Ref. 45. For the �a ,b ,c ,d� cases, the
roughness, surface coverage and island density barely in-
crease before annealing so that most of the dynamical evo-
lution takes place during annealing. These doglegged curves
display inflection points which are shifted to the left when
hfin increases, indicating that the evolution occurs sooner for
thicker films as a result of the dependence of the growth rate
��k� on h0 which is characterized by larger positive regions

in k as h0 increases. The latter dependence is a consequence
of the wetting potential.41 On the other hand, in the cases �e�
and �f�, the islands �which already entered their nonlinear
stage� arise during growth. This is notably visible for the
case �f� in the roughness and coverage plots in Figs. 6 and 7.
After the initial exponential increase, the roughness and cov-
erage time evolution is linear when fully facetted pyramids
are present. These islands evolve in a self-similar manner as
their aspect ratio is kept fixed by the preferential orientations
and their height increases linearly with time during growth
due to mass conservation. Consequently, their coverage and
roughness increase merely linearly while their density is
roughly constant, see Fig. 8. However, a careful study of
Figs. 7 and 8 reveals that the island density and �less
pronouced� island coverage slightly decrease after reaching
their maximal value, as some coarsening occurs where small
isotropic prepyramids disappear to the benefit of large pyra-
mids. Finally, we note that the morphology of the growing
islands is also modified by the amount of matter. For low
hfin, the pyramids are always square base while for higher
hfin, i.e., in the cases �e� and �f�, the islands adopt mainly a
square-base shape but some of them are rectangular pyra-
mids, see Fig. 9. This observation can be rationalized by the

FIG. 5. �Color online� Stationary regime of the numerical simu-
lations of Eq. �32�. The box of size is L=128l0 with l0=27 nm
while the total amount of matter is hfin=9.0 ML �top� and 20.2 ML
�bottom�. The anneal time is 300 min �top� and 250 min �bottom�.
The movie of the time evolution is available online �Ref. 66�.
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FIG. 6. Numerical simulations of Eq. �32�. Evolution of the
surface roughness versus time for, from bottom to top, the six cases
�a ,b ,c ,d ,e , f�.
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FIG. 7. Numerical simulations of Eq. �32�. Evolution of the
surface coverage versus time for, from bottom to top, the cases
�a ,b ,c ,d ,e , f�.
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FIG. 8. Numerical results of Eq. �32�. Evolution of the island
density versus time for, from bottom to top, the cases
�a ,b ,c ,d ,e , f�.
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elastic energetic calculations by Tersoff and Tromp,67 which
shows that small islands adopt a compact symmetric shape
while larger ones minimize their energy with an elongated
shape.

B. Interrupted coarsening

In all the cases under investigation, island coarsening
stops after some time during annealing and the surface prop-
erties display plateaux, see Figs. 6–8. The surface is then
characterized by an assembly of square- or �less frequent�
rectangular-base pyramids, see Fig. 5. Contrarily to the iso-
tropic case,40,41 the coarsening is interrupted due to the ad-
ditional ingredient of the surface energy anisotropy. The an-
isotropy amplitude is a natural parameter for the interrupted
coarsening to happen, and we checked by lowering the mag-
nitude of the variation in �n that isotropic islands continu-
ously coarsen when anisotropy is too low. This is the case for
example when �n is −0.3% lower than its value for the �001�
direction which is −0.7% lower than the value for large
slopes. Eventhough, a small anisotropy as the one considered
in Sec. II B is sufficient to originate a complete change in
Ostwald ripening.

This scenario is in accord with the experimental findings
by Berbezier et al.29 showing that a 18 h anneal of Si/Ge
islands grown after the elastic instability leads to an assem-
bly of pyramidal islands which do not evolve. The compari-
son is also interesting as regards the surface morphology.
The simulations together with the experiments reveal an as-
sembly of islands with a noticeable size inhomogeneity and
spatial disorder, see Fig. 10 eventhough the first stages of the
instability were rather regular. This interrupted coarsening is
intrinsically kinetic as we checked that for a given quantity
of matter, starting with a noisy flat film or with a pyramidal
shape drives the film in the first case to an assembly of dense
islands and in the second case to a single island with a large
exclusion zone.

The resolution of the elastic problem available through
Eq. �32�, allows to perform large-scale simulations of the
surface properties and compute the statistical properties of
the islands resulting from the interrupted coarsening. An ex-
perimentally relevant parameter that we can vary here is the
total amount of matter given by hfin. As shown in Fig. 11,

the island density first increases strongly when
hfin�hc�8 ML and then saturates �and slightly diminishes�
after hfin�12 ML. It is worth noting that the saturation oc-
curs concomitantly with the introduction of rectangular-base
pyramids supported by energetic considerations.67 This satu-
ration is not due to steric effects as it happens for a density
lower than the upper bound resulting from steric arguments.
Indeed, when one considers square-base pyramids with a
base B and mean distance d, writing B�d and assuming that
all matter is collected by islands, leads to the upper bound
hfin�d /30 which is 30 ML given the typical mean distance
d�10 in units of l0 as revealed by the simulations. On the
other hand, as shown on Fig. 12, the island mean volume is
a nonmonotonous function of the quantity of matter, as it first
decreases with hfin before rising. The first decrease can be
understood if one considers the initial stronger than linear
increase in the island density with hfin, see Fig. 11, in con-
junction with mass conservation which relates linearly the
total amount of matter with hfin. The following increase is
merely linear and is related to the density saturation while
hfin increases. Hence, varying solely the quantity of matter
results in a change in both the mean island volume or island
density in a coupled evolution.

FIG. 9. �Color online� Stationary regime of the numerical simu-
lation of Eq. �32� for hfin=15.2 ML and anneal time of 500 min.

FIG. 10. �Color online� �top� Courtesy of Berbezier �Ref. 29�.
AFM image. 18 h anneal of a Si0.75Ge0.25 50 Å thick film during an
annealing at 550 °C. The �110	 direction is horizontal. �bottom�
Stationary regime resulting from the numerical simulations after
annealing during 30 min.
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Finally, we also characterize the island size distribution
which is a crucial characteristic in the self-organization of
crystal growth. The typical plots of these distributions for the
cases �a�, �e�, and �f� are displayed in Fig. 13, after averag-
ing over four simulations. Surprisingly, these distributions
depend nonmonotonically on the amount of matter. The is-
land size distribution is rather wide for low and high hfin,
while it is more peaked for intermediate values. We quantify
the island size dispersion with the standard deviation �v of
these distributions. It is depicted in Fig. 14 and do reveal a
minimum for hfin�12 ML �case �d�	. Hence, the intrinsic
dispersion of the island sizes, even though unavoidable, may
be optimized by choosing a particular value of hfin.

IV. PATHWAY MODEL

To obtain insight in the origin of the observed interrupted
coarsening, we examine an energetic model in the spirit of
Ref. 43 that we extend to describe energetic pathways. We
first recall the basic ingredients of a monodisperse island
model and then extend it to encompass island mutual trans-
formation.

A. Uniform model

Let us first consider a uniform array of pyramids with
volume V, width L, and fixed aspect ratio characterized by
the angle � enforced by the film anisotropy, see Fig. 15.
Each island occupies a capture zone of surface 1 /n and lies
on a wetting layer of height h. The system corresponds via
mass conservation to a flat film �referred to as the reference
system� of height h0 given by

h = h0 − nV . �33�

The energy difference �E between the island array and the
reference state is given per unit cell by43

�E = � fL
2/cos � − L2��h0� + �1/n − L2����h� − ��h0�	 − �eV .

�34�

The first term stands for the cost in surface energy of the
islands where � f is the facet surface energy of the islands.
The second and third terms are associated with wetting
which manifests itself through the h dependence of the flat
film surface energy that we characterize similarly to Eq. �8�,

��h� = �w�1 + cw exp�− h/�w�	 . �35�

�We checked that a wetting dependence of the facet surface
energy would not change the results given below.� Finally,
the last term stands for the elastic energy difference. The
latter is given by Eq. �29� where one can check that for
pyramids with a given aspect ratio, Fel is proportional to the
volume defined above the pyramid base. This property fol-
lows merely when one looks at two similar pyramids linked
by the relation h2�r�=	h1�	−1r�, where hi is the film height
with respect to the pyramid base, and then realizes that both
Fel and the volume scale as 	3. Computing numerically Fel

given by Eq. �29� for a pyramidal shape using discrete Fou-
rier transforms, we find �e=E0�1+��p with p=0.193.

The energy difference �Eq. �34�	 can be rewritten as

�E�v,n,h0�/Es = �̃�h0�v2/3 + �v0
2/3�n� − v2/3	�ev − 1� − �̃e�n�v

�36�

with the dimensionless volume

v = nV/�w �37�

and the parameters
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FIG. 11. Pyramide density �solid line� in the stationary state as
function of the total amount of matter characterized by the final
deposited mean film height hfin. The dashed line results from the
energetic pathway model discussed in Sec. IV with a fixed wetting
layer h=5.1 ML.
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FIG. 12. Mean island volume �v� in the stationary state as func-
tion of the amount of matter.
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FIG. 13. Island volume distributions from the
numerical simulations for the cases �a�, �e�, and
�f�, where v is given in units of l0.
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�̃�h0� = �� f/cos � − ��h0�	/�wcwe−h0/�w, �38�

�̃e�n� = �w�e/nEs, �39�

v0�n� = tan �/6n1/2�w, �40�

and Es=�wcwe−h0/�w�6�w /n tan ��2/3. We consider in the fol-
lowing the parameters used in the simulations of Sec. III
where � f is given by 1+�n, cf. Eq. �7�, at the minimum for
the �105� orientation characterized by tan �=1 /5. Simula-
tions reveal stationary states with a typical density of order
n�10−6af

−2. Moreover, mass conservation �Eq. �33�	 en-
forces the bound v�h0 /�w.

As shown in Ref. 43, the typical variation in �E as func-
tion of the uniform island volume V for a fixed island density
and a given amount of matter h0, displays a minimum for a
characteristic volume Vc. The latter results from the compe-
tition between the elastic energy which decreases as −�eV for
islands with a fixed aspect ratio �given by the surface energy
anisotropy� and the wetting energy characterizing peeling of
the film for low wetting-layer heights which correspond, see
Eq. �33�, to large volumes V. A typical plot of this variation
is shown in Fig. 16 where the first local maxima is due to the
initial surface energy barrier. However, as discussed in Ref.
43, the minimum �Ec decreases monotonously by decreasing
the island density n so that a noninterrupted coarsening is
expected. Hence, this description cannot shed light on the
interrupted coarsening observed in experiments and simula-
tions.

B. Two islands model

The pathway for the island coarsening in the previous
model is associated with a uniform decrease in the density n.
However, coarsening in both experiments and simulations is

first associated with a decrease in small islands for the ben-
efit of bigger ones. In order to describe this evolution, we
revisit the previous model by looking at two islands that can
transfer matter to one another by surface diffusion. They are
characterized by two volumes V1 and V2 above a wetting
layer of height h, a capture zone of size 1 /n, and a fixed
inclination �, see Fig. 17. Mass conservation now enforces
the condition

h = h0 −
1

2
�w�v1 + v2� , �41�

where vi is defined in Eq. �37�. Neglecting elastic interac-
tions between islands, the total energy is

�Etot�v1,v2� = �E�v1� + �E�v2� . �42�

Choosing the parameters that were used in the simulations
and a typical density n�10−6as

−2 as an order of magnitude,
we plot in Fig. 18 the energy per atom as function of V1 and
V2 for a given amount of matter h0=10 ML. This energetic
pathways indicates that the system can exhibit a valley of
states with similar energy. This valley is roughly located
along the dashed line defined as V1+V2=2Vc, where Vc is the
characteristic volume of the uniform model at the same den-
sity as defined in A. The point in the middle at V1=V2=Vc is
in fact a saddle point with a curvature in the valley direction
�along V1=2Vc−V2� much larger than the curvature in the
other principal direction �along V1=V2�. Quantitatively, the
energy difference along the valley is negligible as the energy
varies only about 10−5 eV between its extreme values. The
latter variation being the driving force for coarsening, this
energetic landscape can be interpreted as leading to a kineti-
cally interrupted coarsening. The islands can be glued in a
configuration where the energy variation during coarsening
is negligible. This construction exhibits a characteristic vol-
ume Vc which, for h0=10 ML and n=10−6as

−2, leads to
Lc�6l0 which is the correct order of magnitude of the is-
lands produced by the interrupted coarsening in simulations.
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FIG. 14. Standard deviation �v of the island size distribution as
function of the amount of matter and �inset� relative width �v / �v�.
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FIG. 17. Two islands exchanging mass via surface diffusion.
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Note that, if one would not allow for variations in the
wetting-layer height, one would not get such a flat valley in
the energy landscape. Hence the interrupted coarsening is
allowed by possible �small� wetting-layer height variations.68

However, for a given h0, the previous description does not
allow for a determination of the mean island density. We try
to give such an estimate by considering that the system is
glued at the characteristic volume Vc as seen in Fig. 18. The
condition �E�v ,n ,h0� /�V=0 imposes an implicit relation
among �v ,n ,h0�. A free fitting parameter is still left and we
impose an extra constraint by fixing the wetting-layer height.
Indeed, the different simulations for the cases �a�–�f� are
characterized by a wetting layer roughly constant around
h�5 ML. By setting h=5.1 ML, we get the best estimate
for the expected island density. The result for this approxi-
mation is compared to the simulation results in Fig. 11. The
agreement is rather good for low amounts of matter while it
is significantly altered for thicker films. For the latter case,
elastic interactions intra and inter pyramids show up. Indeed,
rectangular shaped islands start to appear precisely when the
island density as function of hfin saturates, in accordance
with elasticity theory.67 The latter shape transition is not ac-
counted for in our model and thus discrepancies are expected
in this regime. However, the good order of magnitude for
thin films indicates that the scenario of a valley with low
varying energy states is suitable for understanding the ob-
served interrupted coarsening.

V. CONCLUSION

We have studied the long-time dynamics of a thin-film
subject to the morphological elastic instability, known as the
Asaro-Tiller-Grinfeld instability, in a regime where aniso-
tropy becomes prominent. We derive a continuum descrip-
tion accounting for surface effects �wetting and surface en-
ergy anisotropy� and linear elasticity. We considered a basic
anisotropy with minima in the surface energy as function of
the orientation describing a facet orientation relevant when

sufficiently steep islands had grown. The long-range elastic
interactions are computed in the small-slope approximation
where the film free boundary introduces nonlinear geometri-
cal contributions that we calculate explicitly in three dimen-
sions obtaining nonlinear nonlocal energies. We solved nu-
merically the evolution equation describing surface currents
due to chemical-potential gradients and chose parameters
suited for silicon-germanium films. A rather small anisotropy
originates a complete change in the coarsening dynamics. In
isotropic systems, large islands grow at the expense of
smaller ones during an Ostwald coarsening which driving
force is the efficient elastic relaxation allowed by an increase
in the aspect ratio. The latter coarsening allows energy mini-
mization and explains the first stage of ripening of the ATG
instability where mainly isotropic prepyramids grow with an
increasing aspect ratio thence with increasing slopes. How-
ever, once the islands grew enough, anisotropy becomes im-
portant as islands adopt pyramidal shapes with orientations
corresponding to the facet minima. We find in this regime
that island coarsening is suppressed by anisotropy and the
system is glued in a metastable state characterized by square-
or rectangular-base pyramids in accordance with experi-
ments. We characterize the statistical properties of the result-
ing pyramids using large-scale simulations. We show that the
island density first increases as function of the total amount
of matter when mainly square-base pyramids are present
while it saturates when rectangular-base pyramids start to
appear. After an initial small decrease, the mean island vol-
ume mainly increases with the amount of matter indicating a
way of tuning the island characteristics with a simple param-
eter. Moreover, we find that the island size distribution is
more peaked for an optimal quantity of matter. Hence, we
note that by varying the total amount of matter, different
islands can be obtained with different density and volume.
Finally, in order to give an explanation for the experimen-
tally and numerically observed interrupted coarsening, we
generalize an energetic model including anisotropy, elasticity
and wetting, in order to describe energetic pathways relevant
for the modeling Ostwald ripening. The latter pathways ex-
hibit valleys of states with energy difference, which is the
driving force for coarsening, which is vanishingly small and
consequently suitable for explaining the interrupted coarsen-
ing. The predicted island density using this energetic picture
augmented with an extra condition on the wetting-layer
height compares favorably with the numerical results. A
more detailed comparison between experiments and theory
regarding the islands statistical properties is under current
progress.

We note that the transition from pyramids with �105� fac-
ets to domes with extra facets, such as �113� or �15 3 23�, see
e.g., Ref. 7, may be studied using the present framework by
adding other facets associated with additional minima in the
surface energy as done in Ref. 45. The presence of facets and
surface anisotropy are ubiquitous in many crystalline films
so that the tools presented here may also be generalized to
other materials provided proper modifications. Finally, the
consideration of alloying of Si/Ge which may lead to spatial
composition inhomogeneities due to intermixing and segre-
gation is under current scrutiny.

FIG. 18. �Color online� Energetic pathway for the coarsening of
two shape-fix pyramids of volume V1 and V2. The energy is given in
electron volt per atom. The dashed line indicates volume such as
V1+V2=2Vc, where Vc is the critical volume defined in Sec. IV A.
Volumes should satisfy the mass conservation constraint
v1+v2�2h0 /�w. The density is n=10−6af

−2, as typical in simula-
tions and the total amount of matter, h0=10 ML.
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APPENDIX A: SINGLE FILM AND FILM/SUBSTRATE
GEOMETRIES

In order to justify the absence of e−�k�z terms in the film in
the solution �20�, we show the equivalence between the film
and substrate geometry and a strained semi-infinite solid
which is valid when the film and substrate display equal
elastic constants.

We first turn to the film/substrate case. We rewrite the
boundary condition �Eq. �15�	 making explicit reference to
the misfit as

��u, �̄ = 0	 · z�z=0− = ��u, �̄	 · z�z=0+, �A1�

where the �̄ dependence of the stress tensor originates from
the reference state, cf. Eqs. �12� and �13�. The decomposition
�Eq. �18�	 introduces in fact an external stress which can be
deducted according to

��u0 + u1, �̄	 · z = ��u1, �̄ = 0	 · z . �A2�

Moreover, as

��u, �̄	 · z − ��u, �̄ = 0	 · z = �0,0,2E�̄�/�2�2 + � − 1�	 ,

�A3�

is constant in the film and in the substrate in the case of equal
elastic properties, one can check that the continuity relation
�A1� reduces to

��u1, �̄	 · z�z=0− = ��u1, �̄	 · z�z=0+. �A4�

One can then consider the semi-infinite configuration
made of a solid subject to a global biaxial stress in the x and
y directions �referred to with superscripts �� and with the
same free surface. In the latter geometry, we decompose dis-
placements according to

u� = u0
� + u1

�, �A5�

where

u0
� = �0,0,�z� . �A6�

As shown in the following, u1 and u1
� coincide. Indeed, one

can first realize that u1 and u1
� satisfy the same equation

L�u1�=0 �independently of �̄�, with the same boundary con-
dition

��u0 + u1, �̄	�z=h�r� = 0 . �A7�

The displacement continuity at the film/substrate interface
�Eq. �14�	 and the stress continuity �Eq. �15�	 which reduces
to Eq. �A4� are automatically satisfied by u1

� for which no
discontinuity can happen for the arbitrary level z=0. Note
that the hypothesis of equal film and substrate elastic con-
stants turns out to be crucial at that stage as it allows the
continuity relation �A4� to be the same in the film/substrate
and single film configurations. Satisfying the same differen-
tial equation together with the same boundary conditions, the
displacements u1 and u1

� coincide due to the uniqueness of
the solution.

APPENDIX B: SOLUTION FOR THE DISPLACEMENTS

Equations �20� and �22�–�26� define the solution for the
displacement u which can be expanded as

u1 = 

n=1

�


nu1
�n�. �B1�

The solution at first order reads

u1
�1� = �̄

1 + �

1 − �

e�k��z−h0�

�k� ��2�1 − �� + �k��z − h0�	ikxĥ1

�2�1 − �� + �k��z − h0�	ikyĥ1

�1 − 2� − �k��z − h0�	�k�ĥ1

� .

�B2�

At second order, one gets

ux
�2��k,z� = �̄

1 + �

1 − �

e�k��z−h0�

�k�3 � dk1
ĥ1�k1�ĥ1�k − k1�

�k1�

�ikx�z − h0��k���k��k1�k · k1 − 2�k · k1�2

− 2��k ∧ k1�2	 + �1 − 2��kx�k��k1�k · k1

− 4�1 − ���k1,x�k�2k · k1 + �kx�k ∧ k1�2	� �B3�

with a similar expression for uy
�2� after the exchange of x and

y while uz
�2� is given by

uz
�2��k,z� = �̄

1 + �

1 − �

e�k��z−h0�

�k�3 � dk1
ĥ1�k1�ĥ1�k − k1�

�k1�

��z − h0��k�2�2�k · k1�2 + 2��k ∧ k1�2 − �k�

��k1�k · k1	 + 2�1 − ��k2�k1�k · k1 − 2�1 − 2���k�

���k · k1�2 + ��k ∧ k1�2	� . �B4�
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